Perbandingan Metode Klasifikasi C4.5 dan Naïve Bayes untuk Mengukur Kepuasan Pelanggan

Authors

DOI:

https://doi.org/10.32493/informatika.v6i3.9160

Keywords:

Data mining, Classification, Accuracy, C4.5, Naïve Bayes

Abstract

Data mining is a process of collecting meaningful data from some large information contained in information bases, information warehouses or other documentation places. Classification is an educated educational process (supervised learning). The universal classification procedures used include: Decision tree, K-Nearest Neighbor, Naïve Bayes, Neural Network, C4. 5 as well as SVM. Consideration of the classification method is tried to ensure the type of classification that shares the highest accuracy value of an object. The information used in this research is information from a questionnaire about customer satisfaction with the services of PT. Media Semesta Solutions, the factors used in this research are Reliability, Responsiveness, Assurance, Empathy, and Tangibility. Based on the results of the comparative analysis, the information mining classification procedure is C4.5 and Naïve Bayes proves that the C4 method. 5 is more accurate than the Naïve Bayes method, this result is seen from the accuracy value where the C4 procedure. 5 has an accuracy value of 94, 17%, greater than Naïve Bayes with an accuracy value of 85.83%.

Author Biographies

Ines Heidiani Ikasari, Universitas Pamulang

Program Studi Informatika, Fakultas Teknik, Universitas Pamulang

Devi Yunita, Universitas Pamulang

Program Studi Informatika, Fakultas Teknik, Universitas Pamulang

References

Mardi, Y. (2017). Data Mining: Klasifikasi Menggunakan Algoritma C4.5. Jurnal Edik Informatika, 2(2), 213–219. https://doi.org/10.22202/ei.2016.v2i2.1465

Rifqo, M. H., & Wijaya, A. (2017). Implementasi Algoritma Naive Bayes Dalam Penentuan Pemberian Kredit. Jurnal Pseudocode, 4(2), 120–128. https://doi.org/10.33369/pseudocode.4.2.120-128

Sipayung, E. M., Maharani, H., & Zefanya, I. (2016). Perancangan Sistem Analisis Sentimen Komentar Pelanggan Menggunakan Metode Naive Bayes Classifier. Jurnal Sistem Informasi (JSI), 8(1), 958–965. https://ejournal.unsri.ac.id/index.php/jsi/article/view/3250/1907

Shiddiq, A., Niswatin, R. K., & Farida, I. N. (2018). Analisa Kepuasan Konsumen Menggunakan Klasifikasi Decision Tree Di Restoran Dapur Solo. Generation Journal, 2(1), 9.

Mashuri, M., & Mardianis, N. (2020). Pengaruh Jumlah Pelanggan Terhadap Tingkat Profitabilitas Pada Perusahaan Daerah Air Minum Di Kota Bengkalis. JAS (Jurnal Akuntansi Syariah), 4(1), 83–94. https://doi.org/10.46367/jas.v4i1.220

Sugianto, C. A. (2017). Penerapan Teknik Data Mining Untuk Menentukan Hasil Seleksi Masuk Sman 1 Gibeber Untuk Siswa Baru Menggunakan Decision Tree. Jurnal Teknologi Rekayasa, 21(1), 49–54. https://doi.org/10.31227/osf.io/vedu7

Adriyendi, A., & Melia, Y. (2020). Klasifikasi Menggunakan Naïve Bayes Dan K-Nearest Neighbor Pada Manajemen Layanan Teknologi Informasi. Jurnal Teknologi Dan Sistem Informasi Bisnis, 2(2), 99–107. https://doi.org/10.47233/jteksis.v2i2.121

Takalapeta, S. (2018). Penerapan Data Mining Untuk Menganalisis Kepuasan Konsumen Menggunakan Metode Algoritma C4.5. J I M P - Jurnal Informatika Merdeka Pasuruan, 3(3), 34–38. https://doi.org/10.37438/jimp.v3i3.186

Safri, Y. F., Arifudin, R., & Muslim, M. A. (2018). K-Nearest Neighbor and Naive Bayes Classifier Algorithm in Determining The Classification of Healthy Card Indonesia Giving to The Poor. Scientific Journal of Informatics, 5(1), 18. https://doi.org/10.15294/sji.v5i1.12057

Suwarno, A. A. (2016). Penerapan Algoritma Bayesian Regularization Backpropagation Untuk Memprediksi Penyakit Diabetes. Jurnal MIPA, 39(2), 98–106.

Downloads

Published

2021-09-30