Perbandingan Metode Klasifikasi C4.5 dan Naïve Bayes untuk Mengukur Kepuasan Pelanggan
DOI:
https://doi.org/10.32493/informatika.v6i3.9160Keywords:
Data mining, Classification, Accuracy, C4.5, Naïve BayesAbstract
Data mining is a process of collecting meaningful data from some large information contained in information bases, information warehouses or other documentation places. Classification is an educated educational process (supervised learning). The universal classification procedures used include: Decision tree, K-Nearest Neighbor, Naïve Bayes, Neural Network, C4. 5 as well as SVM. Consideration of the classification method is tried to ensure the type of classification that shares the highest accuracy value of an object. The information used in this research is information from a questionnaire about customer satisfaction with the services of PT. Media Semesta Solutions, the factors used in this research are Reliability, Responsiveness, Assurance, Empathy, and Tangibility. Based on the results of the comparative analysis, the information mining classification procedure is C4.5 and Naïve Bayes proves that the C4 method. 5 is more accurate than the Naïve Bayes method, this result is seen from the accuracy value where the C4 procedure. 5 has an accuracy value of 94, 17%, greater than Naïve Bayes with an accuracy value of 85.83%.References
Mardi, Y. (2017). Data Mining: Klasifikasi Menggunakan Algoritma C4.5. Jurnal Edik Informatika, 2(2), 213–219. https://doi.org/10.22202/ei.2016.v2i2.1465
Rifqo, M. H., & Wijaya, A. (2017). Implementasi Algoritma Naive Bayes Dalam Penentuan Pemberian Kredit. Jurnal Pseudocode, 4(2), 120–128. https://doi.org/10.33369/pseudocode.4.2.120-128
Sipayung, E. M., Maharani, H., & Zefanya, I. (2016). Perancangan Sistem Analisis Sentimen Komentar Pelanggan Menggunakan Metode Naive Bayes Classifier. Jurnal Sistem Informasi (JSI), 8(1), 958–965. https://ejournal.unsri.ac.id/index.php/jsi/article/view/3250/1907
Shiddiq, A., Niswatin, R. K., & Farida, I. N. (2018). Analisa Kepuasan Konsumen Menggunakan Klasifikasi Decision Tree Di Restoran Dapur Solo. Generation Journal, 2(1), 9.
Mashuri, M., & Mardianis, N. (2020). Pengaruh Jumlah Pelanggan Terhadap Tingkat Profitabilitas Pada Perusahaan Daerah Air Minum Di Kota Bengkalis. JAS (Jurnal Akuntansi Syariah), 4(1), 83–94. https://doi.org/10.46367/jas.v4i1.220
Sugianto, C. A. (2017). Penerapan Teknik Data Mining Untuk Menentukan Hasil Seleksi Masuk Sman 1 Gibeber Untuk Siswa Baru Menggunakan Decision Tree. Jurnal Teknologi Rekayasa, 21(1), 49–54. https://doi.org/10.31227/osf.io/vedu7
Adriyendi, A., & Melia, Y. (2020). Klasifikasi Menggunakan Naïve Bayes Dan K-Nearest Neighbor Pada Manajemen Layanan Teknologi Informasi. Jurnal Teknologi Dan Sistem Informasi Bisnis, 2(2), 99–107. https://doi.org/10.47233/jteksis.v2i2.121
Takalapeta, S. (2018). Penerapan Data Mining Untuk Menganalisis Kepuasan Konsumen Menggunakan Metode Algoritma C4.5. J I M P - Jurnal Informatika Merdeka Pasuruan, 3(3), 34–38. https://doi.org/10.37438/jimp.v3i3.186
Safri, Y. F., Arifudin, R., & Muslim, M. A. (2018). K-Nearest Neighbor and Naive Bayes Classifier Algorithm in Determining The Classification of Healthy Card Indonesia Giving to The Poor. Scientific Journal of Informatics, 5(1), 18. https://doi.org/10.15294/sji.v5i1.12057
Suwarno, A. A. (2016). Penerapan Algoritma Bayesian Regularization Backpropagation Untuk Memprediksi Penyakit Diabetes. Jurnal MIPA, 39(2), 98–106.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Informatika Universitas Pamulang have CC-BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Informatika Universitas Pamulang recognize that free access is better than priced access, libre access is better than free access, and libre under CC-BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
Jurnal Informatika Universitas Pamulang is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
YOU ARE FREE TO:
- Share : copy and redistribute the material in any medium or format
- Adapt : remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms