Analisis Data Bank Direct Marketing dengan Perbandingan Klasifikasi Data Mining Berbasis Optimize Selection (Evolutionary)

Authors

  • Ahmad Fauzi Universitas Pamulang

DOI:

https://doi.org/10.32493/informatika.v6i1.9291

Keywords:

Bank Direct Marketing, Data Mining, Naïve Bayes, K- Nearest Neighbor, Support Vector Machine, Optimize selection (Evolutionary).

Abstract

In determining marketing strategies, the bank performs a classification from a customer database, the database will be analyzed by a decision maker and this is not easy for a decision maker, because of the complexity of the vast data and the many attributes of the data owned, so that it becomes an obstacle and obstacle. in decision making. This of course can have a negative effect on the company's business processes because there will be delays in determining marketing strategies. Data mining method is a method that can classify large data to determine the level of accuracy of a database. In overcoming these problems, it is necessary to do a database analysis to determine the accuracy level of the database classification owned by the company. For this reason, in this study a classification process will be carried out with the Bank Direct Marketing dataset taken from the UCI Machine Learning Repository web, using the Naïve Bayes algorithm, K-Nearest Neighbor, Support Vector Machine with Optimize Selection (Evolutionary) optimization, the calculation process using a data mining application. namely Rapidminer 5.3, to find the highest accuracy value from the calculation algorithm. Test method with 10-fold cross validation. In this study, the classification results with the highest level of accuracy were obtained using Optimize Selection (Evolutionary) optimization, namely the Naïve Bayes algorithm 90.18%, then K-Nearest Neighbor 86.66%, and Support Vector Machine 89.40%.

 

Author Biography

Ahmad Fauzi, Universitas Pamulang

  1. Dosen Universitas Pamulang
  2. Pegawai PT. Bank Tabungan Negara (Persero).Tbk

References

Ahmad Fauzi, T. (2019). Analisis Potensi Dana Retail Pada Nasabah PT. Bank Tabungan Negara (Persero).Tbk, dengan Metode Decision Tree dan Naive Bayes Berbasis Optimize Selection (Evolutionary). Jurnal Administrasi dan Manajemen Vol 9 No 1 1-7.

Amalia, H. (2016). Komparasi Metode Data Mining Untuk Prediksi Pemasaran Bank Secara Langsung. SNIPTEK2016, 1-6.

Arisawati, E. (2017). Penerapan K-Nearest NeighBor Berbasis Genetic Algorithm Untuk Penentuan Pemberian Kredit. Jurnal Sains Komputer & Informatika (J-Sakti), 1-11.

Irvi Oktanisa, A. A. (2018). Perbandingan Teknik Klasifikasi Dalam Data Mining Untuk Bank Direct Marketing. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 567-576.

Sulaehani, R. (2016). Prediksi Keputusan Klien Telemarketing Untuk Deposito Pada Bank Menggunakan Algoritma Naive Bayes Berbasis Backward Elimination. Jurnal Ilmiah ILKOM, 1-8.

Yunial, A. H. (2020). Analisis Optimasi Algoritma Klasifikasi Support Vector Machine, Decision Tree, dan Neural Network Menggunakan Adaboost dan Bagging. Jurnal Informatika Universitas Pamulang, 247-260.

A.Elsalamony, H. (2014). Bank Direct Marketing Analysis of Data Mining Techniques . International Jurnal of Computer Applications, 12-22.

Akhmad, E. P. (2019). Evaluasi Telemarketing Kartu Kredit Bank Menggunakan algoritma Genetika untuk Seleksi Fitur dan Naive Bayes. Jurnal Aplikasi Palayaran dan Kepelabuhan, 12-22.

Bonggo Bawono, R. W. (2019). Perbandingan Metode random Forest dan Naive Bayes Untuk Klasifikasi Debitur Berdasarkan Kualitas Kredit. Seminar Nasional Edusaintek FMIPA UNIMUS, 343-348.

Ispandi. (2015). Penerapan Algoritma Genetika untuk Optimasi Parameter pada Support Vector Machine untuk Meningkat Prediksi Pemasaran Langsung. Jurnal Of Intelligent Systems, 115-119.

Pungkas Subarkah, E. P. (2020). Perbandingan Metode Klasifikasi Data Mining untuk Nasabah Bank Telemarketing. Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, 139-148.

Rousyati, a. N. (2021). Komparasi Adaboost dan Bagging dengan Naive Bayes pada DataSet Bank Direct Marketing . Bianglala Informatika, 12-16.

Downloads

Published

2021-03-31