Optimasi Jumlah Cluster pada Algoritme K-Means untuk Evaluasi Kinerja Dosen

Authors

  • Vega Purwayoga Universitas Muhammadiyah Cirebon

DOI:

https://doi.org/10.32493/informatika.v6i1.9522

Keywords:

Elbow Method, K-Means, Lecturer performance evaluation, Optimization

Abstract

Lecturers are one of the main actors in universities. Lecturer performance can affect the quality of a college. Because the quality of higher education is strongly influenced by the lecturers, the performance of the lecturers needs to be assessed. Lecturer performance can be assessed by evaluating the lecturer's performance in teaching. Lecturer performance can be evaluated by classifying student assessments of lecturers. Lecturers are assessed based on how the lecturer mastered the material, the lecturer's discipline in teaching, and the presentation of the material. The process of grouping lecturer scores can be done using the K-Means algorithm. K-Means is a popular clustering algorithm that performs well. K-Means requires a parameter that is K or the number of clusters. The importance of the number of clusters so that there is a need for optimization in determining the number of K. In this study, optimization was carried out using the Elbow method so as to produce the ideal number of groups of 4 groups. The results of the clustering evaluation calculated using the SSE were 54.4% which showed that the results were not optimal. The results of the cluster evaluation are not optimal due to the lack of data for the K-Means application.

References

Agarwal, V. (2016). Research on Data Preprocessing and Categorization Technique for Smartphone Review Analysis. November. International Journal of Computer Applications. 131(4):30-36. doi : https://doi.org/10.5120/ijca2015907309

Andri & Marlindawati. (2015). Pengelompokan Minat Belajar Mahasiswa Menggunakan Teknik. Jurnal Ilmiah MATRIK. 3(1):67–76

Muningsih, E., & Kiswati, S. (2018). Sistem Aplikasi Berbasis Optimasi Metode Elbow Untuk. JOUTICA. 3(1):1-8.

Nishom, M. (2019). Perbandingan Akurasi Euclidean Distance, Minkowski Distance, Dan Manhattan Distance Pada Algoritma K-Means Clustering Berbasis Chi-Square. Jurnal Informatika: Jurnal Pengembangan IT. 4(1):20–24. doi : https://doi.Org/10.30591/Jpit.V4i1.1253

Purwayoga, V. (2020). Implementasi Algoritme K-Means Untuk Evaluasi Kinerja Dosen Pada Rancangan Sistem Informasi Manajemen ( SIM ) Kampus. INTI TALAFA : Jurnal Teknik Informatika.12(1):1-6. doi:Https://Doi.Org/10.32534/Int.V12i01.1265

Purwayoga, V, & Sitanggang, I. S. (2020). Clustering Potential Area Of Fusarium Oxysporum As A Disease Of Garlic. International Conference on Environment and Forest Conservation. 528:012040

Putu, N., Merliana, E. (2015). Analisa Penentuan Jumlah Cluster Terbaik Pada Metode K-Means. 978–979.

Rahman, A. T., Wiranto, & Rini, A. (2017). Coal Trade Data Clustering Using K-Means (Case Study Pt. Global Bangkit Utama). ITSMART: Jurnal Teknologi Dan Informasi, 6(1):24–31. doi:https://Doi.Org/10.20961/ITS.V6I1.11296

Rahmansyah, A., Dewi, O., Andini, P., Hastuti, T., Ningrum, P., & Suryana, M. E. (2018). Membandingkan Pengaruh Feature Selection Terhadap Algoritma Naïve Bayes Dan Support Vector Machine. 1–7.

Retnowati, T. H. (2019). Model Evaluasi Kinerja Dosen : Pengembangan Instrumen untuk Mengevaluasi Kinerja. Jurnal Penelitian dan Evaluasi Pendidikan. 21(2):206-214.

Safira, W. (2016). Pengelompokan Minat Baca Mahasiswa Menggunakan Metode K-Means. ILKOM Jurnal Ilmiah. 8(2):89–94.

Seniwati, E. (2011). Perhitungan Penilaian Mahasiswa Terhadap Mengajar Dosen. Jurnal DASI.12(2):1–5.

Singh, A., Yadav, A., & Rana, A. (2013). K-Means With Three Different Distance Metrics. International Journal Of Computer Applications. 67(10):13–17. doi:Https://Doi.Org/10.5120/11430-6785

Widaningrum, I. D. A. (2012). Sistem Informasi Evaluasi Kinerja Dosen Aspe Kompetensi dan Tridarma di Lingkungan Universitas Muammadiyah Ponorogo. 6(1), 49–60.

Widystuti, W., & Darmawan, J. B. B. (2018). Pengaruh Jumlah Data Set Terhadap Akurasi Pengenalan Dalam Deep Convolutional Network. 8–13.

Downloads

Published

2021-03-31